3.727 \(\int \frac {(1+x)^{3/2}}{\sqrt {1-x}} \, dx\)

Optimal. Leaf size=47 \[ -\frac {1}{2} \sqrt {1-x} (x+1)^{3/2}-\frac {3}{2} \sqrt {1-x} \sqrt {x+1}+\frac {3}{2} \sin ^{-1}(x) \]

[Out]

3/2*arcsin(x)-1/2*(1-x)^(1/2)*(1+x)^(3/2)-3/2*(1-x)^(1/2)*(1+x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {50, 41, 216} \[ -\frac {1}{2} \sqrt {1-x} (x+1)^{3/2}-\frac {3}{2} \sqrt {1-x} \sqrt {x+1}+\frac {3}{2} \sin ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 + x)^(3/2)/Sqrt[1 - x],x]

[Out]

(-3*Sqrt[1 - x]*Sqrt[1 + x])/2 - (Sqrt[1 - x]*(1 + x)^(3/2))/2 + (3*ArcSin[x])/2

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {(1+x)^{3/2}}{\sqrt {1-x}} \, dx &=-\frac {1}{2} \sqrt {1-x} (1+x)^{3/2}+\frac {3}{2} \int \frac {\sqrt {1+x}}{\sqrt {1-x}} \, dx\\ &=-\frac {3}{2} \sqrt {1-x} \sqrt {1+x}-\frac {1}{2} \sqrt {1-x} (1+x)^{3/2}+\frac {3}{2} \int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx\\ &=-\frac {3}{2} \sqrt {1-x} \sqrt {1+x}-\frac {1}{2} \sqrt {1-x} (1+x)^{3/2}+\frac {3}{2} \int \frac {1}{\sqrt {1-x^2}} \, dx\\ &=-\frac {3}{2} \sqrt {1-x} \sqrt {1+x}-\frac {1}{2} \sqrt {1-x} (1+x)^{3/2}+\frac {3}{2} \sin ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 37, normalized size = 0.79 \[ -\frac {1}{2} \sqrt {1-x^2} (x+4)-3 \sin ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)^(3/2)/Sqrt[1 - x],x]

[Out]

-1/2*((4 + x)*Sqrt[1 - x^2]) - 3*ArcSin[Sqrt[1 - x]/Sqrt[2]]

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 40, normalized size = 0.85 \[ -\frac {1}{2} \, {\left (x + 4\right )} \sqrt {x + 1} \sqrt {-x + 1} - 3 \, \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(x + 4)*sqrt(x + 1)*sqrt(-x + 1) - 3*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

giac [A]  time = 1.10, size = 31, normalized size = 0.66 \[ -\frac {1}{2} \, {\left (x + 4\right )} \sqrt {x + 1} \sqrt {-x + 1} + 3 \, \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(1/2),x, algorithm="giac")

[Out]

-1/2*(x + 4)*sqrt(x + 1)*sqrt(-x + 1) + 3*arcsin(1/2*sqrt(2)*sqrt(x + 1))

________________________________________________________________________________________

maple [A]  time = 0.00, size = 57, normalized size = 1.21 \[ \frac {3 \sqrt {\left (x +1\right ) \left (-x +1\right )}\, \arcsin \relax (x )}{2 \sqrt {x +1}\, \sqrt {-x +1}}-\frac {\sqrt {-x +1}\, \left (x +1\right )^{\frac {3}{2}}}{2}-\frac {3 \sqrt {-x +1}\, \sqrt {x +1}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x+1)^(3/2)/(-x+1)^(1/2),x)

[Out]

-1/2*(-x+1)^(1/2)*(x+1)^(3/2)-3/2*(-x+1)^(1/2)*(x+1)^(1/2)+3/2*((x+1)*(-x+1))^(1/2)/(x+1)^(1/2)/(-x+1)^(1/2)*a
rcsin(x)

________________________________________________________________________________________

maxima [A]  time = 1.79, size = 28, normalized size = 0.60 \[ -\frac {1}{2} \, \sqrt {-x^{2} + 1} x - 2 \, \sqrt {-x^{2} + 1} + \frac {3}{2} \, \arcsin \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(1/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(-x^2 + 1)*x - 2*sqrt(-x^2 + 1) + 3/2*arcsin(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (x+1\right )}^{3/2}}{\sqrt {1-x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(3/2)/(1 - x)^(1/2),x)

[Out]

int((x + 1)^(3/2)/(1 - x)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 3.37, size = 136, normalized size = 2.89 \[ \begin {cases} - 3 i \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} - \frac {i \left (x + 1\right )^{\frac {5}{2}}}{2 \sqrt {x - 1}} - \frac {i \left (x + 1\right )^{\frac {3}{2}}}{2 \sqrt {x - 1}} + \frac {3 i \sqrt {x + 1}}{\sqrt {x - 1}} & \text {for}\: \frac {\left |{x + 1}\right |}{2} > 1 \\3 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} + \frac {\left (x + 1\right )^{\frac {5}{2}}}{2 \sqrt {1 - x}} + \frac {\left (x + 1\right )^{\frac {3}{2}}}{2 \sqrt {1 - x}} - \frac {3 \sqrt {x + 1}}{\sqrt {1 - x}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)/(1-x)**(1/2),x)

[Out]

Piecewise((-3*I*acosh(sqrt(2)*sqrt(x + 1)/2) - I*(x + 1)**(5/2)/(2*sqrt(x - 1)) - I*(x + 1)**(3/2)/(2*sqrt(x -
 1)) + 3*I*sqrt(x + 1)/sqrt(x - 1), Abs(x + 1)/2 > 1), (3*asin(sqrt(2)*sqrt(x + 1)/2) + (x + 1)**(5/2)/(2*sqrt
(1 - x)) + (x + 1)**(3/2)/(2*sqrt(1 - x)) - 3*sqrt(x + 1)/sqrt(1 - x), True))

________________________________________________________________________________________